Examining Practitioners' Assessments of Perceived Aesthetic and Diagnostic Quality of High kVp–Low mAs Pelvis, Chest, Skull, and Hand Phantom Radiographs


      This study investigated the usefulness of the dose optimization strategy of increased tube voltage (kVp) and decreased tube current-exposure time product (mAs) (or high kVp–low mAs) by examining practitioners' assessments of perceived aesthetic and diagnostic quality of direct digital radiographs acquired using this strategy. Ninety-one practitioners (radiologists, radiology residents, radiographers, and radiography students) from eight clinical sites in Ontario examined three types of radiographs (“standard” image, +20 kVp image, and +30 kVp image) for anthropomorphic pelvis, chest, skull, and hand phantoms and rated (on a five-point scale) each image in regard to its perceived aesthetic quality, perceived diagnostic quality, and visualization of anatomic structures. Our primary findings are that for the pelvis, skull, and hand–although not the chest–images acquired using standard technical factors were rated significantly higher in diagnostic and aesthetic quality than those acquired using the high kVp–low mAs strategy. Despite this, both standard and dose-optimized images of the pelvis, skull, and hand were rated to be of acceptable diagnostic quality for clinical use. In conclusion, for the pelvis, skull, and hand, an increase of 20 kVp was an effective strategy to reduce dose while still acquiring images of diagnostic quality.


      Cette étude évalue l'utilité de la stratégie d'optimisation de la dose fondée sur l'augmentation de la tension du tube (kVp) et de la diminution du produit tube de courant/temps d'exposition (mAs) (ou kVp élevé–mAs faible) en examinant l’évaluation que font les praticiens de la qualité esthétique et diagnostique perçue des radiographies numériques directes prises à l'aide de cette stratégie. Quatre-vingt onze praticiens (radiologistes, résidents en radiologie, radiographes et étudiants en radiographie) de huit sites cliniques en Ontario ont examiné trois types de radiographies (image « standard », image à +20 kVp, image à +30 kVp) de fantômes anthropomorphiques du pelvis, de la poitrine, du crâne et de la main et les ont cotées (sur une échelle de 1 à 5) selon (a) qualité esthétique perçue, (b) leur qualité diagnostique perçue et (c) la visualisation des structures anatomiques. Nos constatations initiales montrent que, dans le cas des images du pelvis, du crâne et de la main, mais non celles de la poitrine, les images prises avec les facteurs techniques standard ont reçu une note significativement plus élevée pour la qualité esthétique et diagnostique que celles prises en utilisant la technique kVp élevé–mAs faible. Cependant, les images standard et à dose optimisée du pelvis, du crâne et de la main ont été jugées de qualité diagnostique acceptable pour un usage clinique. En conclusion, pour le pelvis, le crâne et la main, une augmentation de +20 kVp est une stratégie efficace pour réduire la dose tout en produisant quand même des images de qualité diagnostique.


      To read this article in full you will need to make a payment


        • Canadian Association of Medical Radiation Technologists
        Minimizing patient exposure.
        2012 (Accessed October 24, 2014)
        • Seeram E.
        • Davidson R.
        • Bushong S.
        • Swan H.
        Radiation dose optimization research: Exposure technique approaches in CR imaging—A literature review.
        Radiography. 2013; 19: 331-338
        • Veldkamp W.J.
        • Kroft L.J.
        • Geleijns J.
        Dose and perceived image quality in chest radiography.
        Eur J Radiol. 2009; 72: 209-217
        • Tsai H.Y.
        • Yang C.H.
        • Huang K.M.
        • Li M.J.
        • Tung C.J.
        Analyses of patient dose and image quality for chest digital radiography.
        Radiat Meas. 2010; 45: 722-725
        • Seeram E.
        Radiation Protection.
        Lippincott-Raven Publishers, Philadelphia, PA1997
        • Sherer M.A.S.
        • Visconti P.J.
        • Ritenour E.R.
        Radiation Protection in Medical Radiography.
        6th ed. Mosby Elsevier, Maryland Heights, MO2011
        • Allen E.
        • Hogg P.
        • Ma W.K.
        • Szczepura K.
        Fact or fiction: An analysis of the 10 kVp ‘rule’ in computed radiography.
        Radiography. 2013; 19: 223-227
        • Egbe N.O.
        • Heaton B.
        • Sharp P.F.
        A simple phantom study of the effects of dose reduction (by kVp increment) below current dose levels on CR chest image quality.
        Radiography. 2010; 16: 327-332
        • Al Khalifah K.
        • Brindhaban A.
        Comparison between conventional radiography and digital radiography for various kVp and mAs settings using a pelvic phantom.
        Radiography. 2004; 10: 119-125
        • Ma W.K.
        • Hogg P.
        • Tootell A.
        • et al.
        Anthropomorphic chest phantom imaging—The potential for dose creep in computed radiography.
        Radiography. 2013; 19: 207-211
        • Muhogora W.E.
        • Trianni A.
        • Toso F.
        • et al.
        Comparison of image quality and patient dose for chest x-ray examinations on conventional and low cost computed radiography systems.
        Radiography. 2012; 18: 275-278
        • Manning-Stanley A.S.
        • Ward A.J.
        • England A.
        Options for radiation dose optimisation in pelvic digital radiography: A phantom study.
        Radiography. 2012; 18: 256-263
        • Joyce M.
        • McEntee M.
        • Brennan P.C.
        • O’Leary D.
        Reducing dose for digital cranial radiography: The increased source to the image-receptor distance approach.
        J Med Imag Radiat Sci. 2013; 44: 180-187
        • Aldrich J.E.
        • Duran E.
        • Dunlop P.
        • Mayo J.R.
        Optimization of dose and image quality for computed radiography and digital radiography.
        J Digit Imaging. 2006; 19: 126-131
        • Lamontagne N.D.
        Will digital edge out film?.
        Biophotonics Int. 2003; 10: 48-53
        • Rampado O.
        • Isoardi P.
        • Ropolo R.
        Quantitative assessment of computed radiography quality control parameters.
        Phys Med Biol. 2006; 51: 1577-1593
      1. De Boo DW, Weber M, Deurloo EE, et al. Computed radiography versus mobile direct radiography for bedside chest radiographs: impact of dose on image quality and reader agreement. Clin Radiol 66(9):826–832.

        • Kroft L.J.
        • Veldkamp W.J.
        • Mertens B.J.
        • van Delft J.P.
        • Geleijns J.
        Dose reduction in digital chest radiography and perceived image quality.
        Br J Radiol. 2007; 80: 984-988
        • Freitas M.B.
        • Yoshimura E.M.
        Diagnostic reference levels for the most frequent radiological examinations carried out in Brazil.
        Rev Panam Salud Publica. 2009; 25: 95-104
        • Offiah A.C.
        • Hall C.M.
        Observational study of skeletal surveys in suspected non-accidental injury.
        Clin Radiol. 2003; 58: 702-705
        • Offiah A.C.
        • Grehan J.
        • Hall C.M.
        • Todd-Pokropek A.
        Optimal exposure parameters for digital radiography of the infant skull: a pilot study.
        Clin Radiol. 2005; 60: 1195-1204
        • Commission E
        European guidelines on quality criteria for diagnostic radiographic images.
        Office for Official Publications of the European Communities, Luxembourg, Brussels1996
        • Bontrager K.L.
        • Lampignano J.P.
        Textbook of Radiographic Positioning and Related Anatomy.
        7th ed. Mosby Elsevier, St. Louis, MO2010
        • Gallet J.
        The most powerful diagnostic image processing software from Carestream Health: DIRECTVIEW EVP Plus Software.
        2010 (Accessed October 24, 2014)
        • Martensen K.M.
        Radiographic Image Analysis.
        3rd ed. Elsevier, Toronto, ON2011
        • Yielder J.
        • Davis M.
        Where radiographers fear to tread: Resistance and apathy in radiography practice.
        Radiography. 2009; 15: 345-350